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1. Introduction 

We are interested in determining the electromagnetic fields within closed perfectly conducting cavities 
that may contain dielectric or magnetic materials. The vector Helmholtz equation is the appropriate 
partial differential equation for this problem. It is well known that the electromagnetic fields in a 
cavity can be decomposed into distinct modes that oscillate in time at specific resonant frequencies. 
These modes are referred to as eigenmodes, and the frequencies of these modes are referred to as 
eigenfrequencies. Our present application is the analysis of linear accelerator components. These 
components may have a complex geometry; hence numerical methods are require to compute the 
eigenmodes and the eigenfrequencies of these components. 

The Implicitly Restarted Arnoldi Method (IRAM) is a robust and efficient method for the numerical 
solution of the generalized eigenproblem Ax = ~Bx, where A and B are sparse matrices, x is an 
eigenvector, and ;1 is an eigenvalue. The TRAM is an iterative method for computing extremal 
eigenvalues; it is an extension of the classic Lanczos method. The mathematical details of the IRAM 
are too sophisticated to describe here; instead we refer the reader to [I]. A FORTRAN subroutine 
library that implements various versions of the IRAM is freely available, both in a serial version 
named ARPACK and parallel version named PARPACK. 

In this paper we discretize the vector Helmholtz equation using 1” order H(cur1) conforming edge 
elements (also known as Nedelec elements). This discretization results in a generalized eigenvalue 
problem which can be solved using the IRAM. The question of so-called spurious modes is discussed, 
and it is shown that applying a spectral transformation completely eliminates these modes, without any 
need for an additional constraint equation. Typically we use the IRAM to compute a small set (n < 30) 
of eigenvalues and eigenmodes for a very large systems (N > 100,000). 

2. Problem Formulation 

We are interested in solving the vector Helmholtz equation in a 3-dimensional inhomogeneous volume 
Q, 

(1) 



with boundary condition vi x E = 0 on aQ, where ,!? is the electric field vector, ,u and I are the tensor 
permeability and permittivity, and w is the radian frequency. Employing the Galerkin procedure using 
1” order edge elements denoted by q results in the generalized eigenvalue problem 

Ae = m*Be (2) 

where e is the N-dimensional vector of degrees-of-freedom and the matrices A and B are given by 

A, =jp-‘Vxq,Vxw,, B, =sc@,w,. 
R n 

(3) 

The details of computing the matrices can be found in most finite element textbooks, for example 
[2][3]. Using terminology from continuum mechanics, the matrix A is referred to as the stiffness 
matrix and the matrix B is referred to as the mass matrix. When p and I are real the matrices A and 
B are symmetric; the Matrix A is semi-definite and the matrix B is positive-definite. 

3. A Comment on Spurious Modes 

Equation (1) admits to two types of solutions; irrotational field solutions and solenoidal field solutions. 
An irrotational field is the gradient of a scalar potential function 

Eiv =-v(b. (4) 

Inserting (4) into (1) we see that w = 0 for irrotational fields. Conversely, by taking the divergence of 
(1) we see that if w f 0 then the field must be solenoidal, 

v l EE,, = 0. (5) 

Since the permittivity may not be continuous, equation (5) is best understood in the weak sense: we 
multiply (5) by a scalar potential 4 that is zero on the boundary, and then integrate over the domain R 
and employ the divergence theorem to yield 

I &lq .v(b=o. (6) 
R 

Equation (6) states that a solenoidal solution of (1) is orthogonal to every irrotational solution. 
Solutions of (1) therefore can be decomposed into irrotational (w = 0) and solenoidal (w f 0) 
solutions, with every solenoidal solution being orthogonal to every irrotational solution. An important 
property of the vector finite element method is that the discrete Helmholtz equation (2) has the same 
decomposition of solutions as the original PDE. Let L,, c H, be the set of standard bi-linear nodal 
finite element basis functions, and let the discrete scalar potential be an element of L,, . It can be shown 
that the finite element spaces L,, and qJ are related by VL,, E F?$,, the gradient of every nodal basis 
function can be written as a linear combination of edge functions [4]. Therefore there exists exactly K 
discrete irrotational fields that are gradients of discrete scalar potentials, where K is the number of 



internal nodes in the mesh. It can also be shown that these discrete irrotational fields form the null 
space of the stiffness matrix A, there are exactly K solutions of (2) with w = 0. These are the so-called 
spurious modes; they are static solutions of (2) with non-zero divergence. They are mathematically 
valid solutions of (2), but they are physically uninteresting. We are interested in the solenoidal 
solutions of (2). As in the continuous case, the discrete solenoidal solutions of (2) are orthogonal to the 
discrete irrotational solutions according to the inner product uTBv ; this is a basic property of 
symmetric generalized eigenvalue problems. 

4. Application of ARPACK for electromagnetic eigenvalue problems 

In this section we discuss the application of ARPACK, which is a specific implementation of the 
IRAM, for computing the solenoidal eigenvectors and corresponding eigenvalues of (2). ARPACK 
provides several different subroutines depending upon whether the mass matrix B is the identity or 
not, whether the matrices A and B are symmetric or not, whether A and B are complex valued or not, 
etc. The mass matrix would B would be identity if Cartesian grid finite difference were used for 
discretization of the vector Helmholtz equation. The matrices A and B would be complex valued and 
non-Hermitian if ,u and I were complex valued, representing lossy dielectric and magnetic materials. 
In our case A and B are real symmetric matrices. 

The IRAM is an iterative method for computing a small set of extremal eigenvalues. In ARPACK the 
user can select to compute largest algebraic eigenvalues, smallest algebraic eigenvalues, largest 
absolute value eigenvalues, or smallest absolute value eigenvalues. ARPACK requires 
N l O(nz) + O(m’) storage where N is the dimension of the system and m the desired number of 
eigenvalues to compute. The basic user-specified parameters are: 

a) N, the dimension of the system 
b) 172, the desired number of eigenvalues 
c) WHICH, a character string denoting which eigenvalues to compute 
d) ncv, the number of Lanczos basis vectors to use 
e) tol, the numerical tolerance used to determine convergence 
f) mnxit, the maximum number of iterations 

The number of Lanczos vectors must be at least m + 1. The optimal choice of ncv with respect to nz is 
problem dependent and experimentation is required. If the eigenvalues are well separated then 
ncv = 2 l m is acceptable, where well separated is defined as 

)a; -+ cla, -a,) 
for allj f i with C >> E, 

(7) 

The numerical tolerance tol is used in the stopping criteria Ia1 - il,I I to1 l Ia, 1, where 
il(. is the computed eigenvalue and ii, is the exact eigenvalue closest to A,.. It is tempting to make tol a 
very small number, however this increases the run time of the problem and if tol is too small 
convergence may not occur. It is important to remember that the eigenvalue problem (2) is itself an 
approximation to physical reality, so there is little point in computing the eigenvalues of (2) exactly. 



The parameter maxit specifies the maximum number of iterations, or restarts, of the IRAM. The 
iteration process begins with an initial vector v, which is usually chosen at random. An Arnoldi 
factorization is computed, and the ylcv eigenvalues of the XV x y1cv Arnoldi matrix are computed. This 
represents one iteration. The salient feature of the IRAM is the ability to automatically repeat this 
process with improved initial vectors vi, where each new vi is determined by application of a 
polynomial in A to the starting vector v, . The repeated update of the starting vector through implicit 
restarting is designed to enhance the components of this vector in the direction of the desired 
eigenvalues and damp its components in the unwanted directions. The parameters tol and maxit are not 
independent, a large number of iterations may be required to converge with a small tolerance. 
Fortunately neither tol nor mnxit effect the required amount of memory, these parameters only effect 
the run time of the calculation. 

ARPACK does not require that users actually provide the matrices A and B; instead all that is required 
is the action of these matrices. Specifically, the user must provide Ax -+ w, Bx -+ z, and B-lx --+ y . 
For small systems the mass matrix B can be factored, however since we are interested in large 
problems we employ iterative Krylov-type methods for computing B-lx + y . If iterative methods are 
used for B-lx + y it is essential that residual be significantly smaller than the requested eigenvalue 
tolerance tel. 

We are interested in computing only a few of the solenoidal eigenvectors and corresponding 
eigenvalues of (2). Based on the discussion of spurious modes we know that the distribution of the 
eigenvalues is as shown in Figure 1. 

N-K eigenvalues with 
soleniodal eigenvectors 

Bc.0 

sl s2 s3 s4 s5 s6 s7 . . . 

_: 
K eigenavlu?s’ with 
irrotational eigenvectors 

Figure 1: Eigenvalue distribution of Equation (2) 

As illustrated in Figure 1, the solenoidal modes are not extremal and the IRAM cannot be directly 
applied to (2). Instead, a shift-and-invert spectral transformation is applied to enhance convergence to 
the desired part of the spectrum. If (x, ;i) is an eigenpair of (A,B), and o f ;1, we form a new 
eigensystem 



Bx=y(A-c~B)x 
1 . 

with y=- 
A-0 

(8) 

We choose 0 to be between 0 and SI, the smallest non-zero eigenvalue. The transformation (8) has 
the property that the eigenvalues yi of (8) that are algebraically largest correspond to the eigenvalues 
izi of the original system (2) that are immediately to the right of 0. The zero-valued eigenvalues of the 
original problem are now the algebraically smallest eigenvalues of the transformed system. This is 
illustrated in Figure 2. The IRAM is applied to the transformed system computing the k algebraically 
largest eigenvalues and corresponding eigenvectors. The eigenvectors of (8) and (2) are identical. Once 
found, the eigenvalues of the original problem are computed via 

N-K eigenvalues with 
soleniodal eigenvectors 

. . . ~7~6~5.~4~3 s2 sl 

K eigenvalues with 
irrotational eigenvectors 

Figure 2: Spectrum of the transformed eigensystem 

The shift-and-invert spectral transformation results in a new eigensystem where the desired 
eigenvalues are very well separated from the spurious eigenvalues. There is no need to add an 
additional constraint equation such as done in [5], nor is there any need to modify ARPACK. A 
disadvantage of this approach is that the user must have some knowledge of the problem in order to 
wisely choose 0. In addition, it is now necessary to provide the action of (A - ~$3~‘x + .Y. The 
matrix A - ~33 is indefinite and it may be poorly conditioned. However it is no more ill conditioned 
than the matrices that arise in standard frequency domain finite element electromagnetics where the 
frequency is a user specified parameter and the right hand side of (1) is non-zero. 



5. Results 

5.1 A simple sphere 

The first problem is that of a simple homogeneous sphere. Although this seems trivial, it is in fact a 
difficult problem from a numerical point of view due to the numerous degenerate eigenvalues. The 20 
smallest eigenvalues for a 36 cell per radius sphere are shown in Table 1, along with the exact 
solution. The sphere had a radius of 0.05855m and the speed of light is unity. The mesh had a total of 
55296 hexahedral cells and the dimension of the eigensystem was N = 162528, the number of internal 
edges in the mesh. A sigma of cr = 2000.0 was used to perform the shift-and-invert spectral 
transformation. 

Table 1 l Exact vs Computed eigenavlues (ti2) for 36 cell per radius sphere . 

Mode 
TM11 
TM11 
TM11 
TM2 1 
TM2 I 

E ,xact 
2 196.39 
2196.39 
2 196.39 
4368.84 
4368.84 

Computed Percent Error 
2200.44 0.184 
2200.44 0.184 
2200.44 0.184 
4382.2 1 0.306 
4382.2 I 0.306 

ll”,‘, I 4306.U4 4384.45 n 157 
- . I - ,  

I 

TM2 1 4368.84 4384.45 0.357 

TE2 I 9688.19 973 I .82 0.450 

The data in Table 1 was computed using the following ARPACK input parameters: 

4 N = 162528 
b) m = 20 

c> WHICH = largest algebraic eigenvalues 
4 ncv = 40 

e> tol = 1 .Oe-5 
.f) maxit = 300 

Although maxit was set to 300, only 6 iterations were required for convergence of all 20 eigenvalues. 
The Jacobi-preconditioned conjugate residual method was used to evaluate (A - ~3~‘x + y with a 
residual tolerance of l.Oe-9. The total run time was 25 hours on a Compaq AlphaServer 8400 with a 



theoretical peak performance of 880 Mflops. The run time was dominated by the cost of the conjugate 
residual method and not by ARPACK or by the calculation of the finite element mass and stiffness 
matrices. 

5.2 A linear accelerator induction cell 

The second problem is to compute the lowest eigenmodes of a linear accelerator induction cell. Of 
particular interest is the magnitude of the electric field in the accelerating gap as this determines 
whether or not the particular mode will couple with the electron beam. A 33024 cell hexahedral mesh 
is used to model the induction cell. Part of the cell is vacuum, another part consists of oil with a 
relative permittivity of I,. = 4.5. The input parameters to ARPACK were the same as for the sphere 
problem above except that N = 90237 for this problem. Based on back-of-the-envelope estimations a 
sigma of cr = 0.001 was chosen for the shift-and-invert spectral transformation. A total of 5 IRAM 
iterations were required for convergence of all 20 eigenmodes. The total run time was 15 hours on the 
same Compaq AlphaServer 8400. The computed eigenvalues are shown in Table 2, naturally there is 
no analytical solution to compare to for this problem. The column labeled w2 is the computed 
eigenvalues of (2) using unity speed of light, the column labeled Mhz is the calibrated resonant 
frequencies of the induction cell. 

Figure 3 shows the i”‘, the 5’h, the 13’h, and the 201h eigenmodes of the induction ceil. The figures show 
electric field magnitude. Although it may be difficult to discern from the gray-scale figures, the 1”’ and 
20th modes have maximum field values in the accelerating gap and hence will couple strongly with the 
electron beam, whereas the 5’h and 13’h modes are examples of modes that will not couple strongly 
with the beam. 

.01721 246.471 

.02222 280.015 

.02222 280.015 

.02930 321.560 

.02930 321.560 

.03585 355.683 

.03585 355.683 

.05206 428.607 

Table 2 : The 20 lowest eigenvalues and resonant frequencies for the induction cell. 



I”’ mode, I32 Mhz 

I 31h mode, 439 Mhz 

51h mode, 280 Mhz 

20”’ mode, 523 Mhz 

Figure 3 : Selected eigenmodes for linear accelerator induction cell. The geometry is clipped so 
that the internal structure of the modes can be seen. 
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